Contents

HYDRAULIC MOTORS
VARIABLE DISPLACEMENT

Design, characteristics and advantages 3
Efficiency and operating conditions 4
Order code 6
Dimensions MV series motors 7
Dimensions MVSI series motors 9
Dimensions MVA series motors 11
Displacement control 13
Options | Accessories 14
Installation and start-up recommendations 15

Also find the fixed displacement LEDUC motors range in the BENT AXIS HYDRAULIC MOTORS - FIXED DISPLACEMENT catalogue downloadable on www.hydroleduc.com

- Models from 5 to 180 cc/rev
- Available in DIN and SAE versions
- In fixed displacement, special drainless motor.

Complete catalogues available at www.hydroleduc.com
Definition & advantages

► Main applications
- Suitable for use in either open or closed loop circuits
- Wheel drives
- Track drives
- Winches

► Advantages of the LEDUC variable displacement motors
- 9 pistons designed for high starting torque and reduced pulsations at low speed
- Continuous variation in displacement from \(V_{\text{max}} \) to \(V_{\text{min}} (=0) \)
- High operating ratio (5 : 1)
- Compact size, high weight-power ratio
- High speed and high operating pressure
- Low noise level: barrel driven by conical pistons
- Long service life: high performance bearings
- 3 choices of displacement control: see page 9 (HPA, H2N, E2N)

► Technical characteristics of LEDUC variable displacement motors

<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. displacement (V_{\text{max}})</td>
<td>30.6 (\Rightarrow) 85.2</td>
<td>41.1 (\Rightarrow) 115.6</td>
</tr>
<tr>
<td>Min. displacement (V_{\text{min}})</td>
<td>0 (\Rightarrow) 57.4</td>
<td>0 (\Rightarrow) 78.1</td>
</tr>
<tr>
<td>Displacement ratio 5 (V_{\text{max}} / 5)</td>
<td>17 cc</td>
<td>23.1 cc</td>
</tr>
<tr>
<td>Max. continuous operating pressure (P_{\text{max}})</td>
<td>400 bar</td>
<td>400 bar</td>
</tr>
<tr>
<td>Max. peak pressure (P_{3})</td>
<td>450 bar</td>
<td>450 bar</td>
</tr>
<tr>
<td>Max. speed at max. displacement (N_{\text{max}}) at (V_{\text{max}})</td>
<td>3900 rpm</td>
<td>3550 rpm</td>
</tr>
<tr>
<td>Max. speed at min. displacement (N_{\text{max}}) at (V_{\text{min}})</td>
<td>6800 rpm</td>
<td>5600 rpm</td>
</tr>
<tr>
<td>Max. flow absorbed (Q_{\text{max}})</td>
<td>331 l/min</td>
<td>408 l/min</td>
</tr>
<tr>
<td>Max. output power (P_{\text{max}})</td>
<td>220 kW</td>
<td>271 kW</td>
</tr>
<tr>
<td>Max. output torque at (P_{\text{max}}) and (V_{\text{max}}) (C_{\text{max}})</td>
<td>54 daN.m</td>
<td>73 daN.m</td>
</tr>
</tbody>
</table>

Currently two models of motor are offered: 85cc/rev and 115 cc/rev. Models to extend the range are currently being developed.

► Advantages of LEDUC variable motors
High quality know-how and materials. The design choices below ensure the reliability and long service life of LEDUC motors.
Efficiency and operating conditions

► **Efficiency of the MV, MVA, and MVSI motors**

These graphs are given as an indication only; for further information, please contact our Technical Service.

► **Preparation of the motor**

Bleeding of control device is done automatically during initial commissioning.

► **The fluid**

LEDUC motors are designed for use with mineral based hydraulic fluid. Using other fluids is possible but may require a modified motor. Please contact us with details of fluid.

Recommended viscosity:
- Ideally: between 15 and 400 cSt,
- Maximum range: between 5 and 1600 cSt.

► **Filtration of the hydraulic fluid**

The service life of the motors depends greatly on the quality and the cleanliness of the hydraulic fluid. We recommend minimum cleanliness as follows:
- NAS 1638 class 9,
- SAE class 6,
- ISO/DIS 4406 class 20/18/15.

For fluids at very high temperatures 194 to 239 °F (90 to 115 °C), we recommend a minimum cleanliness class of 19/17/14 according to ISO 4406.

► **Rotating speeds**

Minimum rotating speed to obtain continuous rotation is 200 rpm (however, in certain conditions, the motor can run at speeds as low as 50 rpm). Maximum rotating speed is given for each model of motor.

► **Installation positions**

LEDUC motors are made to operate in all positions (see details on page 15).

► **Operating temperatures**

- As standard, LEDUC motors are fitted with FKM seals (Viton®).
 Operating temperatures: from -13 to 239 °F (-25 à 115 °C).
- As an option, HYDRO LEDUC proposes NBR seals, for operating temperatures from -40 to 176°F (-40 to 80°C).

IMPORTANT NOTE:

Before start up, ensure the motor is filled with hydraulic fluid: See section on installation and start-up, page 15.
Efficiency and operating conditions

► Direction of rotation

The motors rotate clockwise or counter-clockwise depending on the direction of hydraulic flow entering the motor.

Clockwise rotation (CW)

Counter-clockwise rotation (CCW)

► Drain pressure

It is essential to drain the motor, through T1 or to T2, to avoid excessive pressures on the shaft seal. Maximum acceptable internal pressure depends on shaft rotation speed.

However, following these guidelines will avoid problems during operation:

- Maximum internal pressure (Int P) regardless of rotating speed (continuous): 4 bar.
- Maximum pressure regardless of rotating speed: 5.5 bar.
- The maximum pressure in the motor housing must be greater than the external pressure (ext P).

► Acceptable forces applied to motor shaft

<table>
<thead>
<tr>
<th>Variable motors MV</th>
<th>MVSI</th>
<th>MVA</th>
<th>85</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr</td>
<td>daN</td>
<td>1300</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Fa</td>
<td>N/bar</td>
<td>80</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
To obtain the code for your motor, complete the different parameters 01 to 11 in the table on the left according to the options you require (see table below).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>MV</td>
<td>MVSI</td>
<td>MVA</td>
<td>MV</td>
<td>MVSI</td>
<td>MVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td></td>
</tr>
<tr>
<td>Mounting flange</td>
<td>ISO 3019-2, 4 bolts</td>
<td>ISO 3019-2, 2 bolts</td>
<td>SAE C 2 bolts</td>
<td>SAE D 4 bolts</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td></td>
</tr>
<tr>
<td>DIN 5480 splined</td>
<td>W40</td>
<td>W40</td>
<td>W40</td>
<td>W40</td>
<td>–</td>
<td>–</td>
<td>W1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE JT44 splined</td>
<td>–</td>
<td>W45</td>
<td>–</td>
<td>W45</td>
<td>–</td>
<td>–</td>
<td>W2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet ports</td>
<td></td>
</tr>
<tr>
<td>Flange</td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td>0</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>M0</td>
</tr>
<tr>
<td>Side</td>
<td>0</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>N0</td>
</tr>
<tr>
<td>1</td>
<td>●</td>
<td>N1</td>
</tr>
<tr>
<td>Drain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>M2</td>
<td>M2</td>
<td>U2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td></td>
</tr>
<tr>
<td>Automatic high pressure</td>
<td></td>
</tr>
<tr>
<td>△p = 10 bar</td>
<td>●</td>
<td>HPA</td>
</tr>
<tr>
<td>△p = 100 bar</td>
<td>●</td>
<td>HPM</td>
</tr>
<tr>
<td>Hydraulic 2 speeds</td>
<td></td>
</tr>
<tr>
<td>V_{min} to V_{max}</td>
<td>●</td>
<td>H2N+</td>
</tr>
<tr>
<td>Electric 2 speeds</td>
<td></td>
</tr>
<tr>
<td>V_{min} to V_{max}</td>
<td>●</td>
<td>E2N+</td>
</tr>
<tr>
<td>Suitable for use of speed sensor</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>●</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>●</td>
<td>0</td>
</tr>
<tr>
<td>Speed sensor</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>●</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>●</td>
<td>0</td>
</tr>
<tr>
<td>Flushing valve</td>
<td></td>
</tr>
<tr>
<td>Without flushing valve</td>
<td></td>
</tr>
<tr>
<td>4.25 l/min (△p = 25 bar)</td>
<td>●</td>
<td>SV</td>
</tr>
<tr>
<td>10 l/min (△p = 25 bar)</td>
<td>●</td>
<td>VB</td>
</tr>
<tr>
<td>14 l/min (△p = 25 bar)</td>
<td>●</td>
<td>VB10</td>
</tr>
<tr>
<td>With flushing valve</td>
<td></td>
</tr>
<tr>
<td>4.25 l/min (△p = 25 bar)</td>
<td>●</td>
<td>VB10</td>
</tr>
<tr>
<td>10 l/min (△p = 25 bar)</td>
<td>●</td>
<td>VB10</td>
</tr>
<tr>
<td>14 l/min (△p = 25 bar)</td>
<td>●</td>
<td>VB10</td>
</tr>
<tr>
<td>Seal</td>
<td></td>
</tr>
<tr>
<td>PFKM</td>
<td>●</td>
<td>F</td>
</tr>
</tbody>
</table>

Legend:
- Existing model
- Not yet existing

Requires a N1 flange.
Shaft - code 04

W1
Splined shaft DIN 5480
W40 x 2 x 30 x 18 x 9g

Inlet ports - code 05

M0
Rear flanges
SAE 1" 6000 psi

N0 or N1
Side flanges
SAE 1" 6000 psi

Dimensions (in mm) are given only as an indication.
Shaft - code 04

W1: Splined shaft DIN 5480
W40 x 2 x 30 x 18 x 9g

W2: Splined shaft DIN 5480
W45 X 2 X 30 X 21 X 9g

Inlet ports - code 05

M0: Rear flanges
SAE 1" 6000 psi

N0 or N1: Side flanges
SAE 1" 6000 psi

M12 depth 17 mm

Dimensions (in mm) are given only as an indication.
Dimensions (in mm) are given only as an indication.
Shaft - code 04

W1 Splined shaft DIN 5480
W40 x 2 x 30 x 18 x 9g

W2 Splined shaft DIN 5480
W45 x 2 x 30 x 18 x 9g

Inlet ports - code 05

M0 Rear flanges
SAE 1” 6000 psi

N0 or N1 Side flanges
SAE 1” 6000 psi

Dimensions (in mm) are given only as an indication.
Shaft code

S1
Splined shaft SAE J744
17T 12/24DP 1-1/2"

S2
Splined shaft SAE J744
14T 12/24DP 1-1/4"

Inlet ports code

M0
Rear flanges
SAE 1" 6000 psi

N0 or N1
Side flanges
SAE 1" 6000 psi

Dimensions in inches (mm) are given only as an indication.
Shaft - code 04

S1 Splined shaft SAE J744
13T 8/16DP 1-3/4”

Inlet ports - code 05

M0 Rear flanges
SAE 1" 6000 psi

N0 or N1 Side flanges
SAE 1" 6000 psi

Dimensions in inches (mm) are given only as an indication.
The automatic displacement control, high pressure, automatically adjusts displacement as a function of the set pressure level. This can be set between 80 and 350 bar.

Once set pressure has been reached, the motor starts changing displacement from \(V_{\text{min}} \) to \(V_{\text{max}} \). Pressure remains stable, torque increases and speed decreases until \(V_{\text{max}} \) is reached.

Once \(V_{\text{max}} \) has been reached, motor pressure can exceed set pressure if required.

Setting \(V_{\text{min}} \) or \(V_{\text{max}} \) displacement is done by applying an external pilot pressure, or not. Pilot pressure can be set by a screw from 5 to 25 bar.

Once pilot pressure has been reached, the motor starts changing displacement from \(V_{\text{min}} \) to \(V_{\text{max}} \) in version H2N+ (\(V_{\text{max}} \) to \(V_{\text{min}} \) on request in version H2N-).

Important note: the pilot pressure line X must be drained when it is not under pressure (to ensure evacuation of leakage flow).

Setting \(V_{\text{min}} \) or \(V_{\text{max}} \) displacement is done by applying an external electrical current via a solenoid, or not.

Standard voltage of the coil is 24V (12V on request).

When the coil is activated, the motor starts changing displacement from \(V_{\text{min}} \) to \(V_{\text{max}} \) in version E2N+ (\(V_{\text{max}} \) to \(V_{\text{min}} \) on request in version E2N-).
Options | Accessories

SPEED SENSOR & INDICATOR OF DIRECTION OF ROTATION
LEDUC CODE: 093327

Codes 08 and 09

MV, MVA, MVSI series motors can be fitted with an induction type speed sensor, to measure rotating speed and also direction of rotation. This accessory may only be used on motors which are suitably adapted to take it (see the order code system).

FLUSHING VALVE | LEDUC CODE: VBS 091180

Code 10

Used to create flow to cool the motor. This valve is essential for all intensive uses of motors and contributes to long service life.

The valve takes some hydraulic fluid from the return connection port (low pressure) and reinjects it into the motor housing. This is then evacuated via the motor drain line.

Flushing valves are only available for use with motors with side ports (N1).

Technical data for the sensor

- **Supply voltage**: 8...32 V DC
- **Current consumption**: maximum 6 mA without load
- **Output frequency**: 0 Hz...20 kHz
- **Protection type**: IP 69 k
- **Operating temperature**: – 104°F...+ 257°F (– 40°C...+ 125°C)
- **Weight**: around 65 g
- **Cable length**: 1500 mm

Dimensions in inches (mm) are given only as an indication.
Installation & start up

Maximizing service life of bearings
In cases where there is a radial force on motor shaft, keeping the direction of that force within the shaded areas shown below will improve service life of the motor.

<table>
<thead>
<tr>
<th>Gear hub</th>
<th>Pulley hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor in rotation CCW pressure in A</td>
<td>Motor in rotation CW pressure in B</td>
</tr>
<tr>
<td>Motor in rotation CW pressure in B</td>
<td>Motor in rotation CCW pressure in A</td>
</tr>
<tr>
<td>Motor capable of rotation CCW and CW</td>
<td></td>
</tr>
</tbody>
</table>

Mounting position of motors
LEDUC motors can be used in only mounting position. In "shaft upwards" position, make sure that the motor housing is completely filled with fluid.

In installations where the position of the motor (H) is above the tank for the drain return, be sure the drain line is always submerged in fluid. If this is not the case, it is necessary to add a check valve on the drain line as shown in the figure on right.
HYDRO LEDUC SAS
Head Office & Factory
BP 9 F-54122 AZERAILLES
FRANCE
Tel. +33 (0)3 83 76 77 40

HYDRO LEDUC GmbH
Am Ziegelplatz 20
D-77746 SCHUTTERWALD
DEUTSCHLAND
Tel. +49 (0) 781-9482590
Fax + 49 (0) 781-9482592

HYDRO LEDUC AB
Betongvägen 11
461 38 TROLLHÄTTAN
SWEDEN
Tel. + 46 (0) 520 10 820

HYDRO LEDUC BV
Ericssonstraat 2
5121 ML RIJEN
THE NETHERLANDS
Tel. +31 161 747816

HYDRO LEDUC N.A. Inc.
Grand Parkway Industrial Park
23549 Clay Road
KATY, TX 77493
USA
Tel. +1 281 679 9654

HYDRO LEDUC
SAS au capital de 4 065 000 €
EORI FR31902742100019
RC Nancy B 319 027 421
contact@hydroleduc.com